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Remote Sensing to Distinguish Soybean from Weeds
After Herbicide Application’

W, BRIEN HENRY, DAVID R. SHAW KAMBHAM R. REDDY, LORI M. BRUCE, and
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Abstract: Two experiments, one focusing on preemergence (PRE) herbicides and the other on post-
emergence (POST) herbicides, were conducted and repeated in time to examine the utility of by
perspectral remote sensing data for discriminating common cocklebur, hemp sesbania, pitted mor
niagglory, sicklepod, and soybean after PRE and POST herbicide application. Discriminant models
were created from combinations of multiple indices. The model created from the second experimental
run’s data set and validated on the first experimental run’s data provided an average of 97% correct
classification of soybean and an overall average classification accuracy of 65% for all species. These
data suggest that these models are relatively robust and could potentially be used across a wide range
of herbicide applications in field scenarios. From the data set pooled across time and experiment
types, a single discriminant model was created with multiple indices that discriminated soybean from
weeds 88%, on average, regardless of herbicide, rate, or species, Signature amplitudes, an additional
classification technique, produced variable results with respect to discriminating soybean from weeds
after herbicide application and discriminating between controls and plants to which herbicides were
applied; thus, this was not an adequate classification technique.
Nomenclature: Common cocklebur, Xanthiu,n strumarium L; hemp sesbania, Sesbania exaltata
(Raf,) Rydb. ex. A.W. Hill; pitted morningglory, Ipomoea lacunosa L; sicklepod, Sennna obrusifolia
(L.) Irwin and Bamaby; soybean, Givcine max (L.) Men.
Additional index words: Acifluorfen, .chlorimuron, hyperspectral imagery, imazaquin, indices, me
tribuzin, pendimethalin, ROC curve.
Abbreviations: CCC, canonical correlation coefficient; DAA, days after application; DINO, differ
ential index of normalized observations; LDA, linear discriminant analysis; NDVI, normalized dif
ference vegetation index; NW, near-infrared; POST, postemergence; PRE, preemergence; ROC, re
ceiver operator characteristics; SA, signature amplitudes; SCA, species classification accuracy; SDM.
single discriminant model; SWIR, short-wave infrared.

INTRODUCTION

Because weeds grow in aggregated patches (Cardina
et al. 1997), there exists the potential to apply herbicides
site specifically to these weed patches as opposed to ap-
plyinr blanket herbicide applications across the entire
field. This approach would save the producer time, water,
and application expenses, as well as reduce the amount
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of pesticides released into the environment. Current tech
niques used in site-specific weed management require
that fields must be sampled relatively intensively. The
degree to which fields must be sampled for site-specific
herbicides to be effective is currently cost- and time-
prohibitive (Medlin 1999). Ultimately, maps of weed
populations could be developed to interface with com
puterized decision support systen.s to provide site-sp
cific recommendations for treating each threshold-level
weed infestation with the most economical and effica
cious herbicide (Medlin and Shaw 2000). Remote sens
ing can potentially be used to identify these weed infes
tations. The accuracy with which ground, aerial, and sat
ellite systems can measure targets in the field is con
stantly increasing (P Thenkabail, unpublished data),
However, detection of threshold-level populations of
small, controllable we-eds will be difficult because of the
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small weed size required for control and elimination of
weed interference before yield loss. Various research
projects are currently evaluating ground-based and aerial
remote sensing techniques for weed detection and clas
sification (Gray et al. 2002; Koger et al. 2002). Identi
fying varying weed spectra at specific field locations
could be perfectly suited for integration with global po
sitioning system—geographic information technology to
develop georeferenced maps of herbicide treatment re
gimes (Luschei et al. 2001; Van Wychen 2002).

For this technology to be robust and useful to pro
ducers, it is necessary to discriminate between weeds
and crop under a variety of conditions, Herbicides may
be applied to soybean preemergence (PRE) or post-
emergence (POST) (or both) Should a herbicide fail to
completely control the weed population because of lack
of an activating rainfall (Johnson 2000). inadequate fo
liar coverage (Hartzler 1999), rainfall washing the her
bicide off immediately after application (Kendig and
Johnson 2002), or general ineffectiveness of the herbi
cide on problem species (Mitich and Smith 1989: York
and Culpepper 2002). weeds would remain in the field,
potentially affecting yield or harvestability. Remote
sensing could be used to identify the weeds that were
not effectively controlled with initial herbicide applica
tions, and follow-up applications could be made to con
trol the problem (Singh et a!. 1991; Wilson 1992; York
and Culpepper 2002). Site-specific herbicide applications
could then control the remaining weed populations. To
date, the degree to which herbicide injury from a pre
vious application influences discrimination between
weed species and soybean is not documented. The ob
jective of this research was to determine whether her
bicide injury from a previous application interferes with
using remotely sensed data to discriminate between
weeds and crop.

MATERIALS AND METHODS

Two experirnetits., each replicated three times and re
peated during late August and June of 2001, were con
ducted outdoors at the R. Rodney Foil Plant Science Re
search Center at Mississippi State, MS The first exper
iment focused on PRE herbicides and was conducted in
a randomized complete block design with a 3 by 4 by 5
factorial arrangement of treatments, with herbicide, rate,
and species as factors. The following weed species were
chosen because they commonly appear on producer’s
farms in Mississippi: common cocklebui hemp sesbania,
pitted morningglory, and sicklepod. Soybean (cultivar
‘Hutche.son’) was also included. All the plants in both

experiments were grown in 3.84. pots containing a Bos
ket tine sandy loam from the Delta Research and Exten
sion Center, Stoneville. MS. Seeds were sown in excess
and thinned to one plant per pot. Plants were watered as
needed and fertilized weekly with approximately 230 ml
of fertilizer solution3 containing the following concen
tration of nutrients and micronutrients: N. 584 mgfL: P
502 mgfL; K, 486 mg/L; Fe, 5.8 mgfL; Cu, 2.7 mg/I.:
Zn, 2.33 mg/L; Mn. 1.94 mg/L: B, 0.777 mg/L; and Mo.
0.0019 mg/L. The three PRE herbicides included ima
zaquin, metribuzin, and pendimethalin. After planting,
herbicides were applied with a C02-pressurized back
pack sprayer in 140 LJha at 160 kPa. All herbicides were
applied at 0.5 X, 0,25 X, and 0.125 X rates of their lowest
recommended use rates, which were: imazaquin, 105 g
ac/ha; metri.buzin, 280 g aiilia; and pendimethalin. 560
g ai/ha (Ahrens 1994). These rates were chosen to target
a range of herbicide application in which plants would
be injured but not entirely killed.

The second experiment focused on POST herbicides
and was also conducted in a randomized complete block
design with a 2 by 4 by 5 factorial arrangement of treat
ments, with the same species as the PRE experiment.
Acifluorfen and chlonmuron were applied at the five- to
seven-leaf stage. The herbicides were also applied with
a CO2-pressurized backpack sprayer in 140 IJha at 160
kPa. All herbicides were applied at 0.5X, 0.25X,
0.125X, and 0.OX of the lowest use rates: acifluorfen.
140 g aiiha and chlonmuron, 8.8 g ailha (Ahrens 1994).
All treatments included a 1.0% (vlv) nonionic surfac
tant.4

Hyperspectral data were generated from individual
leaves. Leaves were specifically chosen from similar ma
turity levels across species to control for differences
caused by leaf ge or maturity. For soybean and hemp
sesbania, the second and third unfurled leaves down
from the top of the plant were measured. For common
cocklebui pitted momingglory, and sicidepod, the third
and fourth unfurled leaves down from the top of the
plant were measured.

Hyperspectral reflectance data were collected with a
handheld spectroradiometer5at 1, 5, 6, 8, and 9 d after
application (DAA) for the POST experiments and at 28.
30, and 34 DAA for the PRE experiments .An active
light source (tungsten filament) was used to minimize
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Table 1. Indices used foi assessing vegetative health and statiis.

Index Ratio’ Reference

RVI (NIRJred) Jordan (1969)
‘sD\ I t’xlR — d ‘sIR cdi Rouse ci J Ti kir I 0
DVI (NJR - red) Lillesand and Kjefer 1957): Richardson and Everin 1992)
NI)Vlg (NIR green)i(NIR -- green) Gitelson et al. (1996
lEVI NJRJ(IR -‘ red) Cnppcn (1990)
MSI (Trn51fm4) Hunt and Rock (1989)

Abbreviations: RVI, ratio vegetation index.; NDVI, normalized difference vegetation index; DVI, difference vegetation index; NDVig, NDVI green; 1P21,
infrared percentage vegetation index; MSI, moisture stress index; NIR,. near-infrared; Tm, thematic tn.appec

‘Green 545—555 mu; red = 670—680 ore; NIR = 835—845 me; Tm4 = 760—900 nm; Tm5 1,550—I .750 not

dcx have been created that address issues such as mini
mizing soil background interference (Huete 1988). With
this concept of tailoring an index to address a particular
need, additional differential index of normalized obser
vations (DINO) indices (Table 2; Figure 2) were con
structed from regions of the electromagnetic spectrum
that would potentially maximize the differences in re
flectance caused by moisture stress, herbicide injury, or
differential water use with respect to species. Carter et
al, (2000) suggest that the region between 690 and 720
nm is particularly sensitive for stress detection in a wide
variety of vascular plants. Because reflectance in the
720nm region is prone to be affected by stress, it was
included in several of the DINO indices. In addition, in
several of the DING indices, reflectance values were
squared to increase the relative differences. Several stud
ies have also suggested that the short-wave infrared
(SWIR) (1,400 to 2,500 am) is largely influenced by
plant water status (Gausman 1985; Tucker 1980); there
fore, because herbicide injury has the potential to dam
age plant cells and thus influence the leaf water potential
of a plant, peak 1 (P1 = average 1,631 to 1,641 nm),
an average of the reflectance across a 10-nm range, and
peak 2 (P2 = average 2,215 to 2,225 urn) were chosen
as representatives from this region and included in the

Table 2. Differential indices of normalized observations (DINO) including
regions of the electromagnetic spectrum between 1.400 and 2.500 nut

Index Portions of the sectrmiY

DINOI (P1 --- red)/(1 + red)
DINO2 (P2 - red)/(P2 — red)
DINO3 U-’) —

DINO4
DINO5 dil -r- P20/red
171N(i Pi — P’ 7:0,1 (0) —

DINO7 (P1 ± P2)1721)
DINOS (10 x P2)’/720
D1NO9 ((P2)2 — 720)/((2)2 + 720)
DINOIO ((5 x P2)2 — 720)/((5 x P2)2 -4- 720)
DINOII P2
DINOI2 (P2 — 720)1(2 + 720)

‘P1 = peak 1, average (1,631—1.641 nm); P2 peak 2. average (2,215—
2.225 cm): red. average (670—680 cm): 720 720 cm.

construction of the DING indices. Not only were the
“best” (areas of this region in which reflectance was
most distinctly different between treatments.) portions of
SWIR region considered in construction of these indices
but also the “worst” (areas obscured by moisture bands)
portions as well. Although an area around 1.400 am ap
peared to provide consistent separability between treat
ments, if an airplane or satellite platform were used to
obtain the data, indices created from wavelengths around
1,400 urn would be obscured by a moisture band and
would be rendered useless.

Reflectance data were analyzed within each experi
mental data set, between experimental data sets, and fi
nally, within an all-encompassing, pooled data set com
prising data from all experiments.

The second analysis technique used SA from a subset
of the spectral bands as features. Data were pooled
across experimental runs and were analyzed within both
PRE and POST experiment types. Because 2,151 reflec
tance values are available to be used as classification
features, it is computationally efficient to select a subset
of bands (top five bands) based on di scriminant capa
bility. Receiver operator characteristics (ROC) analysis
was used to determine the efficacy of each band as a
potential classification feature. ROC analysis was origi
nally used to measure the accuracy with which radar
analysts identified aircraft. The correct identification of
an aircraft was weighed against the frequency that either
something that was not an aircraft was identified as such
(false positive) or that an aircraft was not correctly iden
“nri false “eran ROtE ana vs ien i t1ii studS
assumes that the two classes-’ features have Gaussian dis
tributions, The area under the ROtE curve ranges from
0.5 to 1.0, with 0.5 representing features not useful in
classification (exact overlap of the two classes’ distri
bution curves) and 1.0 corresponding to ideal classifi
cation features (no overlap between distribution curves)
(Hanley and McNeil 1982). The area under the ROtE
curve was then used as a design parameter for choosing
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Table 4. Discriminant models generated across herbicide rates using multiple
indices produced classification accuracies using a model generated from one
data set to classify the other data set,

Linear discriminant model
Experiment

Constructed from Tested on type Soybean OveralE

—.—

Experiment 1 Experiment 2 PRE 70 73
Experiment 2 Experiment I PRE 94 71
Experiment I Experiment 2 POST 89 60
Experiment 2 Experiment I POST 100 58

Data set from which a discriminant model was created using multiple
indices.

Data set on which a discriminant model created from another experiment’s
data was tested.

Abbreviations: PRE, preemergence; POS1 postemergence.
Overall classification accuracy data include all species: soybean, pitted

morn ingglory. sicklepod. common cocklebur, and hemp sesbania

experimental run (Table 3). In this instance, soybean was
discriminated 92% from weeds, and overall species clas
sification accuracy (SCA) was 79%. Using separate dis
criminant models, each created to analyze data generated
under a specific set of circumstances, soybean classifi
cation accuracies ranged from 83 to 98% (Table 3).

The next step in data analysis was to determine how
well these data pooled, with respect to the herbicide ap
plied, PRE and POSI’ and also with respect to time and
experimental data set (Table 4). The ability to correctly
discriminate soybean from weeds with models developed
from one data set and validated on another data set
should detennine the robustness of these models. Soy
bean classification accuracies ranged from 70% with a
model constructed from the data generated in the first

PRE experiment and tested on the second PRE experi
ment to 100% with a model constructed from data gen
erated in the second POST experiment and tested on the
first POST experiment (Table 4). Classification accura
cies, using models developed from one experiment val
idated on the other experiment, remained relatively high.
suggesting that data were consistent across experiments;
therefore, data sets were pooled. Similar analyses were
then performed on the one large data set.

Discriminant models were again generated within
each specific set of conditions (Table 5). For instance, a
unique model was generated to analyze all plants to
which a l/2X application of acifluorfen was made. Un
der these circumstances, this model discriminated soy
bean 93%. Soybean classification accuracies ranged from
80 to 97% using multiple models to discriminate within
a variety of herbicide and rate combinations. Soybean
was not classified as well after pendimethalin applica
tion; this was probably due to slight soybean injury from
this herbicide. The controls, to which there were no her
bicides applied, generated 82% classification accuracies
across species. Discriminating soybean from weeds with
out herbicide treatment was most difficult; healthy veg
etation had more similar reflectance characteristics.

It is impractical to take these analysis techniques to
the field and expect to generate multiple discriminant
models dependent on specific situations and herbicide
applications. Ideally, from this one large data set, a sin
gle, robust, discriminant model could be created and
used under a variety of circumstances. Table 6 displays
the classification accuracies of this model. The single

Table 5. Species classification accuracies by herbicide and rate using multiple discriminant models, each generated from subsets’ of the entiie data set.

Pitted Common HempHerbicide Rate Soybean morningglory Sickiepod cocklebur sesbania Overall

——-.-——————————————

Acifinorfen 1/2 93 67 70 75 79 775/4 53 ‘5 64 63 67 701/8 93 70 62. 67 79 74
thlorimoron 112 97 60 71 69 63 72114 93 55 71 55 .73 70

1/8 97 64 71 53 82 74
Imazaquin 1/2 98 50 78 73 79 761/4 93 72 84 64 82 791/8 84 76 92 79 79 82
Metruhuzin 1/2 95 co 87 86 81 821/4 90 79 77 57 67 741/8 83 71 78 64 83 76Pendinsethalin 1/2 80 83 81 50 81 751/4 80 63 83 75 70 741/8 80 81 94 72 89 83
None 0 82 66 81 74 80 77

A unique di.scnminant model was created to classify data within each combination of herbicide and rate: for example, a discrimmnant model was created todscrimnate among all species rcj vi:cb a i/2x rare of acifluorfen was applied,
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Table Indices comributing to species classification accuracy and the CCC’ associated with them.

Species classification accuracy

Pitted Common Hempindex removed CCC Soybean mornin glory cocklebur Sicklepod sesbania Overall
NDVi 0.41 86 6$ 73 63 78 74DINO3 0.41 $6 6$ 73 63 79 74RVI 0.41 85 67 73 63 79 73DINO3 0.31 85 67 74 63 79 73D1NO5 040 85 67 74 62 78 73MSI 0.39 85 67 77 58 78 73DINO6 0.38 85 66 78 60 77 7301N07 0.37 87 63 76 59 76 72DINO2 0.37 87 61 74 60 78DINO12 0.36 56 58 74 63 80 72DINOI 0.36 84 57 74 60 79 71Dll’lO1l 0.34 82 54 72 57 78 69DINO9 0.33 82 52 72 58 78 68IPV1 0.30 81 47 73 56 72 66NOVIg 0.27 82 49 68 18 69 57DINOIO 0.23 84 41 65 17 68 55DVI 015 85 a$ 52 5 24 43DINO8 = final index remaining

Abbreviations: NDVI, normalized difference vegetation index; DING, differential index of normalized observations; RVI, ratio vegetation index; MSI,moisture siress index; LPV1, infrared percentage vegetation index: NDVIg, NDVI green: DVI, difference vegetation index.
Indices wets, sequentially remosed from the model belinnine v,ith indiies th it contobued least to explatnine the sriabi1ity inh’rent the s ten nowonly one index remained.

Table 8. Signature amplitudes used to discriminate between both soybean and
weed species to which a 112X rate of preemergence herbicide was applied.

Classification accuracy

Herbicide DAA Soybean Weed Overall

%

Common cocklebur
Pendimethalin 28 100 92 96

30 83 S3 83
34 50 50 50

Metribuzin 28 70 70 70
30 40 80 67
34 75 50 63

Imazaquin 28 82 83 62
30 88 75 81
34 50 50 50

Hemp sesbanta
Pendimethalin 28 92 92 92

30 33 .50 44
34 83 83 83

Metrihuzin 28 70 67 69
30 40 50 45
34 .50 0

imazaquin 28 91 83 87

a 47. 67

Sicklepod
Pendimethalin 28 83 83 83

30 33 5.5 47
34 67 83 75

Metribuzin 28 70 60 75
30 60 40 47
34 100 67 80

imazaquin 28 91 100 95
30 88 83 85
34 33 67 50

SA. analysis was also used to discriminate weeds from
soybean after PRE herbicide application. SA results were
generated from one large PRE data set created by pooi
ing both runs of the experiment. Results were variable,
with overall classification accuracies fluctuating between
38 and 100% (Table 8). In general, regardless of herbi
cide, rate, or weed species. as DAA increased from 28
to 34, discriminating weeds from soybean became more
difficult and classification accuracies declined across
herbicide, rates, and species, from 82 to 57%, respec
tively (data not shown). Herbicide injury facilitated the
discrimination of soybean from weeds, From an applied
perspectIve, for the 1/2>< rate, if classification accuracies
were averaged across weed species and herbicides, it was
possible to discriminate weeds from soybean on average
83% at 28 DAA (Table 8). Weeds nomaily emerge with
in approximately i wk. ot the PRE herbicide applicatIon
This would provide approximately a 3-wk window in
which to use remote sensing to effectively discriminate
between weeds and soybean. This would be the most
crucial time to identify weeds for a producer, Challenges
would include the small size of the weed with respect to
the soil background. Pixel mixing and variability caused
by soil composition and moisture level must be ad
dressed with respect to field data. The promising con
clusion from these data is that reflectance, analyzed with
SA techniques, even if influenced by PRE herbicide ap
plication, can be used to discriminate between weeds and
soybean.
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L.) in soybean fields. Foresters have used similar tech
niques to assess stand composition, with respect to spe
cies identification. Franklin et al. (2001) produced 75%
or better classification accuracies among stand conlpo
sition when incorporating texture and reflectance data in
their analyses. Van Aardt and Wynne (2001) effectively
used stepwise discriminant analysis (99 to 100%) to dis
criminate between pine and hardwood species. Species
separability among three pine species ranged between 62
and 84%, and data most heavily influencing classifica
tion accuracies tended to come from the visible and the
SWIR regions.

Potential weaknesses of these data analysis techniques
may include a loss of consistency, when applied to field
data that were acquired with a potentially more variable
active light source. This potential weakness is not a func
tion of the analysis techniques, per se, but rather a func
tion of how the data were collected. How well these
analysis techniques perform on data gathered Lander O
tentially more variable field conditions is unknown. Can
opy structure, shading, and soil type may also contribute
variability with respect to species classification, hethi
cide application, and herbicide injury. These data were
generated from individual leaves pressed onto a flat,
black background; in the field, a canopy of leaves to
which herbicides were applied may appear differently.
Other herbicides, in addition to the ones used in this
research, may produce different injury symptoms. An
example of this would be a phenoxy herbicide, 2,4-D,
which causes a twisting symptomology. If a weed were
twisted and the underside of the leaf were visible to a
sensor above the canopy, the degree to which this type
of injury might interfere with discriminating crop from
weeds is not known. Indices, developed and identified in
the present study, were quite consistent and able to dis
criminate between weeds and crop, regardless of scenar
io. Ideally, these analysis techniques would be robust
enough to handle a variety of situation including various
herbicides and species.

This analysis technique is now ready to be tested on
field data. In theory, this model should continue to func
tion equally well because more species are encountered
in the field, With respect to the weeds included in this
study, soybean was most frequently misclassified as pit
ted morningglory, which on visual inspection appears to
have the most similar color and hue compared to soy
bean. Other leguminous species such as sicklepod and
hemp sesbania did not present any misclassification dif
ficulties.
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